

GREENi - Umweltbilanz Ihres Gebäudes

Vorhaben: Parkhaus

Robert-Koch-Str. 1 84034 Landshut

Berichtersteller: SEHLHOFF GMBH

Schönaustraße 36 84036 Landshut

Landshut, 27. April 2022

I L STU

Urheberrecht: Jede Art der Vervielfältigung, Weitergabe oder Veröffentlichung sei es auch nur in

Teilen ist nur mit Zustimmung des Gutachtenerstellers gestattet. Dieses Gutachten wurde ausschließlich für das genannte Projekt und exklusiv für den Vorhabensträger erstellt. Eine anderweitige Verwendung oder Übertragung auf andere Projekte

ist ausgeschlossen. Alle Urheberrechte bleiben vorbehalten.

Gewähr: Die Berechnungsergebnisse basieren auf den importierten Daten und deren

Datenqualität. Eine Gewähr auf Richtigkeit wird daher nicht übernommen.

Inhalt

1.	Grundlagen	4
2.	Gebäudedaten	4
3.	Umweltbilanzen	5
3.1.	Gesamtbetrachtung	5
3.2.	Graue Umwelteinflüsse je m² Nettoraumfläche in Referenz	6
4.	Wie viel CO₂ steckt in Ihrem Gebäude?	7
4.1.	Treibhauspotenzial - Lebenszyklusbetrachtung	8
4.2.	Treibhauspotenzial - je IFC-Klasse	9
4.3.	Treibhauspotenzial - je Material	10
5.	Wie viel Ethen steckt in Ihrem Gebäude?	11
5.1.	Ozonbildungspotenzial - Lebenszyklusbetrachtung	12
5.2.	Ozonbildungspotenzial - je IFC-Klasse	13
5.3.	Ozonbildungspotenzial - je Material	14
6.	Wie viel SO₂ steckt in Ihrem Gebäude?	15
6.1.	Versauerungspotenzial - Lebenszyklusbetrachtung	16
6.2.	Versauerungspotenzial - je IFC-Klasse	17
6.3.	Versauerungspotenzial - je Material	18
7.	Wie viel Phosphat steckt in Ihrem Gebäude?	19
7.1.	Überdüngungspotenzial - Lebenszyklusbetrachtung	20
7.2.	Überdüngungspotenzial - je IFC-Klasse	21
7.3.	Überdüngungspotenzial - je Material	22
8.	Wie hoch ist der erneuerbare Primärenergiebedarf Ihres Gebäudes?	23
8.1.	Erneuerbare Energie - Lebenszyklusbetrachtung	24
8.2.	Erneuerbare Energie - je IFC-Klasse	25
8.3.	Erneuerbare Energie - je Material	26
9.	Wie hoch ist der nicht-erneuerbare Primärenergiebedarf Ihres Gebäudes?	27
9.1.	Nicht-erneuerbare Energie - Lebenszyklusbetrachtung	28

9.2.	Nicht-erneuerbare Energie - je IFC-Klasse	29
9.3.	Nicht-erneuerbare Energie - je Material	30
10.	Wie hoch ist der Gesamtprimärenergiebedarf Ihres Gebäudes?	31
10.1.	Gesamtprimärenergiebedarf - Lebenszyklusbetrachtung	32
10.2.	Gesamtprimärenergiebedarf - je IFC-Klasse	33
10.3.	Gesamtprimärenergiebedarf - je Material	34
11.	Bewertung und Vorschläge	35
12.	Anhang	36
12.1.	Graue Umwelteinflüsse je Material	36
12.2.	Graue Umwelteinflüsse mit Referenzwerten bezogen auf ein m² Netto-Raumfläche	37
12.3.	Definitionen	38
13.	Literaturverzeichnis	40

1. Grundlagen

Die Grauen Umwelteinflüsse eines Gebäudes bezeichnen die ökologischen Auswirkungen, die bei Herstellung, Transport, Lagerung, Verkauf und Entsorgung der Materialien eines Gebäudes entstehen.

Die ökologische Bilanz wird auf Grundlage der vorliegenden Planungsdaten des Gebäudes und nach den Umwelteinflüssen der Materialien aus der ÖKOBAUDAT vom Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen ermittelt. Zur Berechnung wurden Fundamentkörper überschläglich angenommen. Das 3D-Modell dient der Ermittlung der Umweltbilanz und ist für weitere Planung nicht geeignet.

2. Gebäudedaten

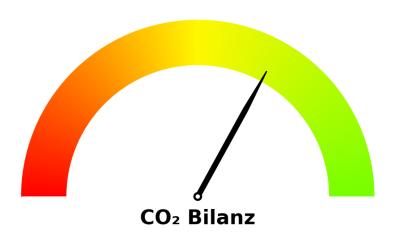
Bauwerk	Parkdeck
Hauptnutzung / Gebäudekategorie	Parkhaus
Adresse	Robert-Koch-Str. 1, 84034 Landshut
Baujahr	
Netto-Raumfläche in m²	8234.0

3. Umweltbilanzen

3.1. Gesamtbetrachtung

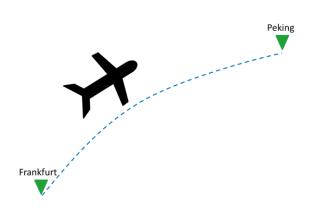
Die einzelnen Umweltindikatoren werden mit Referenzwerten je Gebäudetyp verglichen und mit einer Gewichtung nach der Deutschen Gesellschaft für Nachhaltiges Bauen bewertet.

3.2. Graue Umwelteinflüsse je m² Nettoraumfläche in Referenz


Umweltindikator	Indikator	Das Gebäude im Vergleich, Typ II
Treibhauspotenzial in kg CO₂ Äquiv/Netto-Raumfläche	230,9	gut
Ozonbildungspotenzial in kg Ethen Äquiv/Netto-Raumfläche	0,1	befriedigend
Versauerungspotenzial in kg SO2 Äquiv/Netto-Raumfläche	0,5	gut
Überdüngungspotenzial in kg Phosphat Äquiv/Netto-Raumflä- che	0,4	schlecht
Gesamtenergiebedarf in MJ/Netto-Raumfläche	3188,1	gut
Nicht-erneuerbare Primärenergie in MJ/Netto-Raumfläche	2401,1	gut
Anteil erneuerbarer Primärenergie in %	24,7	sehr gut

Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).

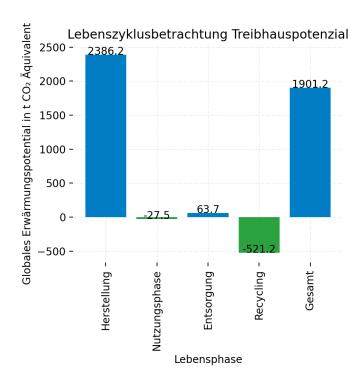
Nähere Details zu den Indikatoren, Referenzwerten und Definitionen ist als Anhang 12.2 beigelegt.

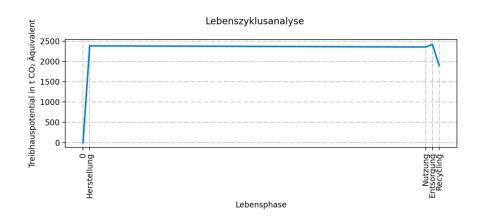

4. Wie viel CO₂ steckt in Ihrem Gebäude?

Treibhauspotenzial

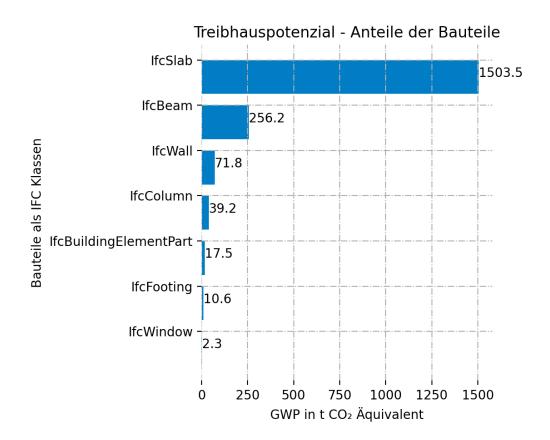
Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).

Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.

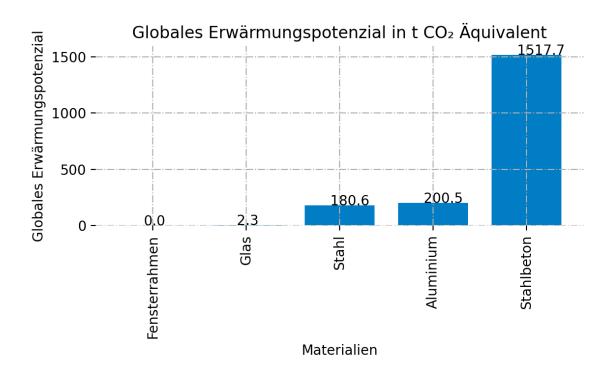

Die Graue CO₂-Emission entspricht...


...dem Ausstoß bei **1462,4 Flügen** von Frankfurt nach Peking. ...dem Ausstoß eines PKWs in **11.957.233 km** bei einem Verbrauch von 6 l Diesel / 100km.

Zur Kompensation der Grauen CO₂-Emission innerhalb eines Jahres benötigt man **63.373 Bäume**. Dies entspricht abhängig von Alter, Art und Pflege einer Fläche von ca. 158 ha Wald.


4.1. Treibhauspotenzial - Lebenszyklusbetrachtung

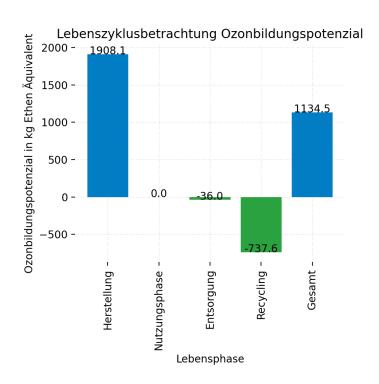
Eine CO₂ Speicherung ist durch "die Recycling-, Rückgewinnungs- oder Wiederverwendungspotenziale für das nächste Produktsystem" (Figl, 2017) möglich.

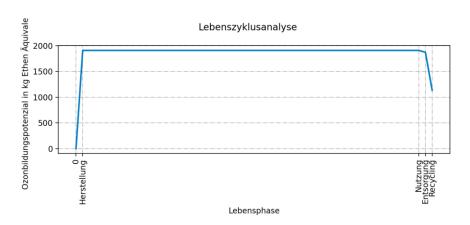


4.2. Treibhauspotenzial - je IFC-Klasse

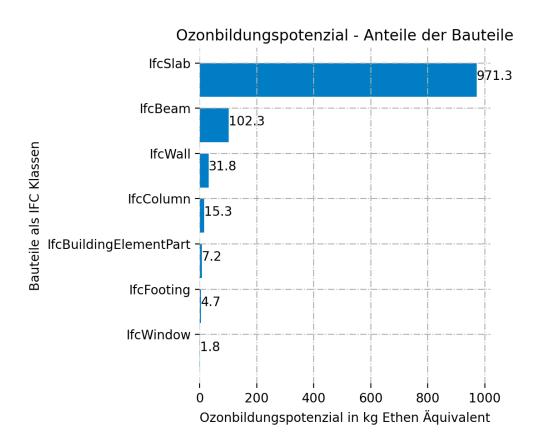
4.3. Treibhauspotenzial - je Material

5. Wie viel Ethen steckt in Ihrem Gebäude?

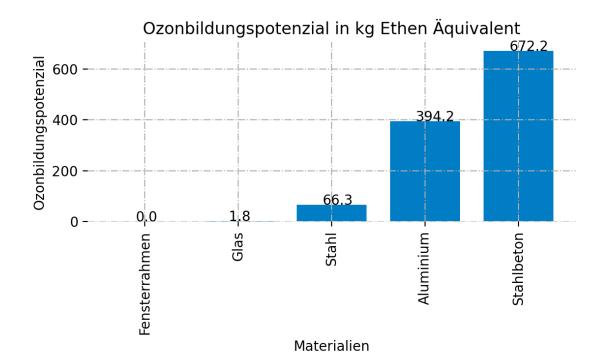

Ozonbildungspotenzial



Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).


Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.

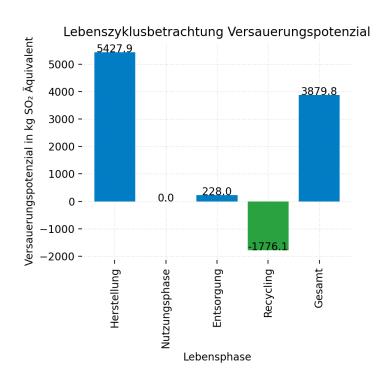
5.1. Ozonbildungspotenzial - Lebenszyklusbetrachtung

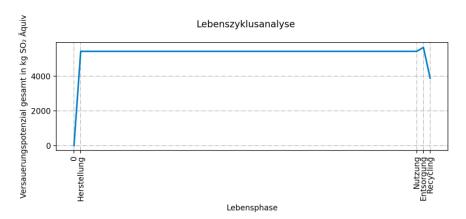


5.2. Ozonbildungspotenzial - je IFC-Klasse

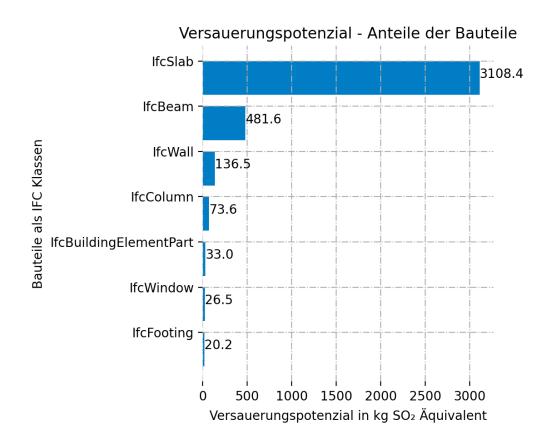
5.3. Ozonbildungspotenzial - je Material

6. Wie viel SO₂ steckt in Ihrem Gebäude?

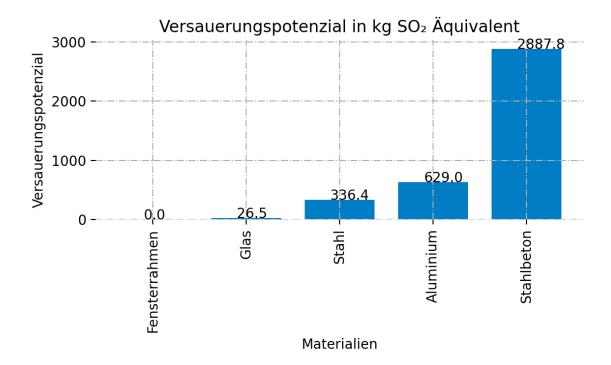

Versauerungspotenzial



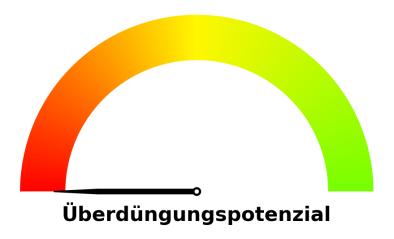
Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).


Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.

6.1. Versauerungspotenzial - Lebenszyklusbetrachtung

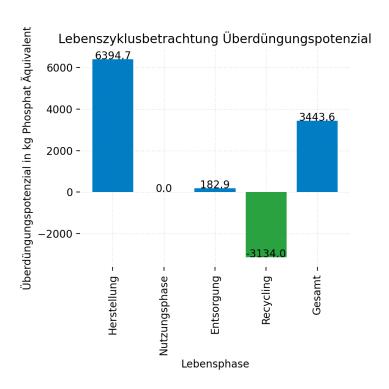


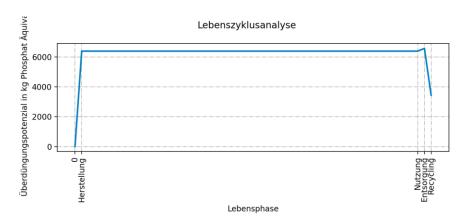
6.2. Versauerungspotenzial - je IFC-Klasse



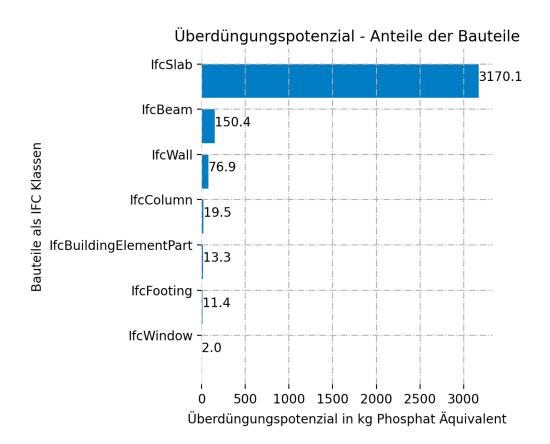
6.3. Versauerungspotenzial - je Material

7. Wie viel Phosphat steckt in Ihrem Gebäude?

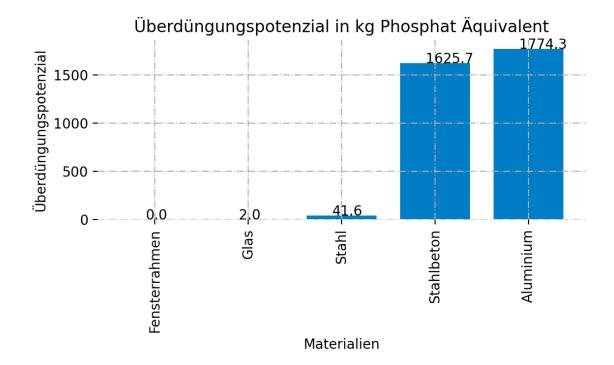

Überdüngungspotenzial



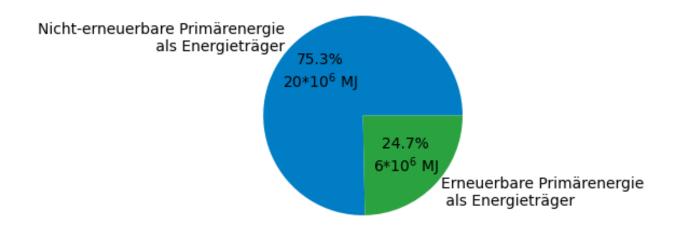
Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).


Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.

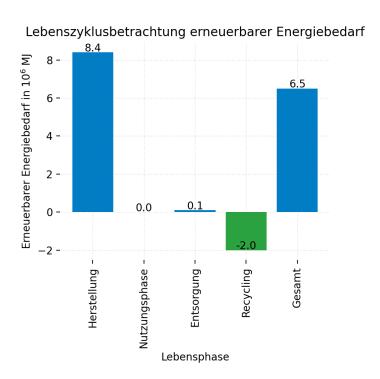
7.1. Überdüngungspotenzial - Lebenszyklusbetrachtung

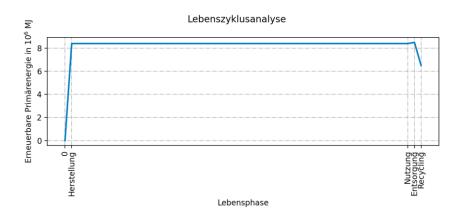


7.2. Überdüngungspotenzial - je IFC-Klasse



7.3. Überdüngungspotenzial - je Material

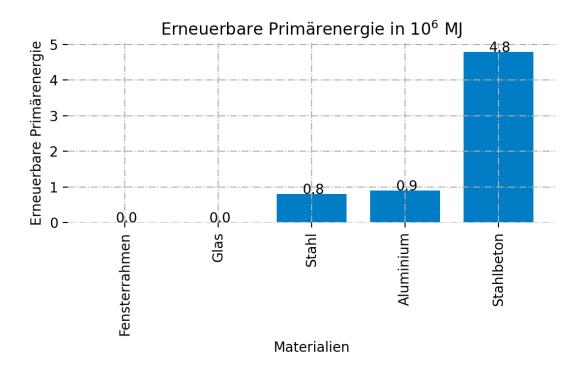



8. Wie hoch ist der erneuerbare Primärenergiebedarf Ihres Gebäudes?

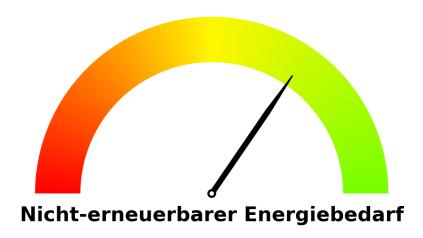
Erneuerbare Energie



8.1. Erneuerbare Energie - Lebenszyklusbetrachtung

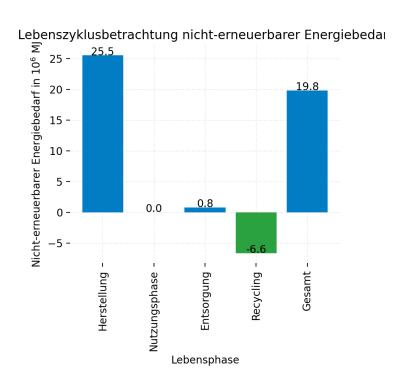


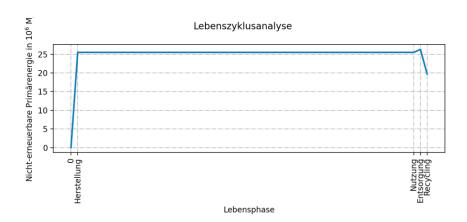
8.2. Erneuerbare Energie - je IFC-Klasse



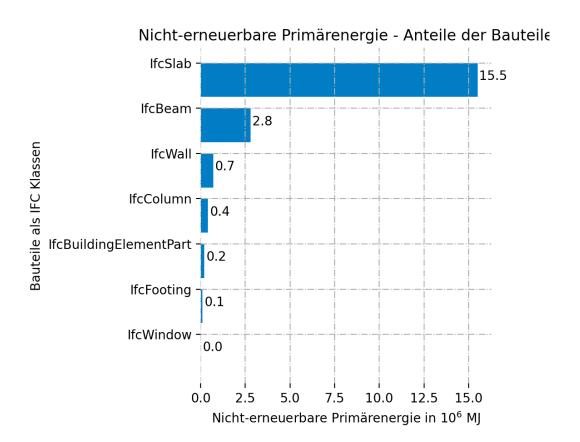
8.3. Erneuerbare Energie - je Material

9. Wie hoch ist der nicht-erneuerbare Primärenergiebedarf Ihres Gebäudes?

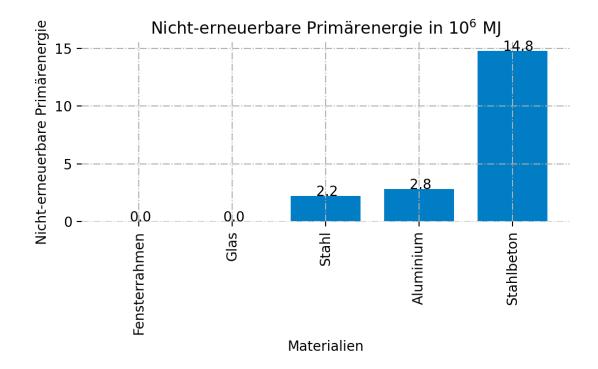

Nicht-erneuerbare Energie



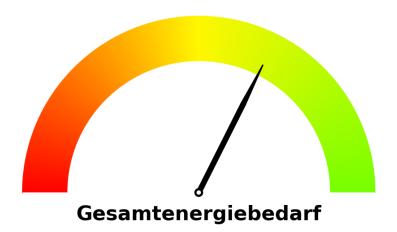
Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).


Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.

9.1. Nicht-erneuerbare Energie - Lebenszyklusbetrachtung



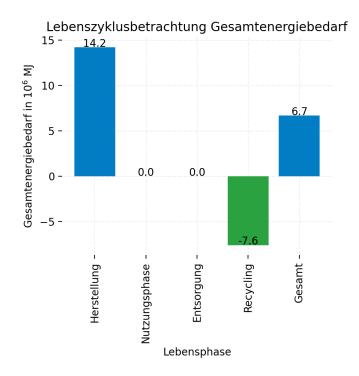
9.2. Nicht-erneuerbare Energie - je IFC-Klasse

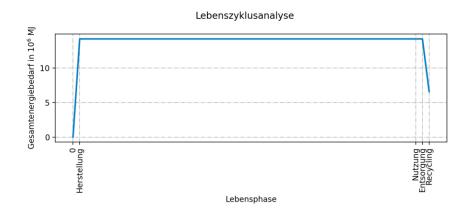


9.3. Nicht-erneuerbare Energie - je Material

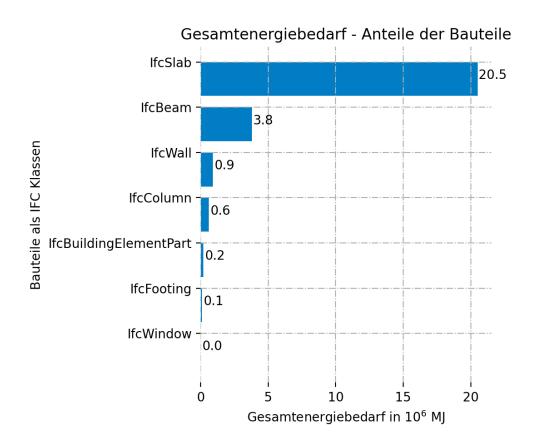
10. Wie hoch ist der Gesamtprimärenergiebedarf Ihres Gebäudes?

$Gesamt prim\"{a}renergie bedarf$

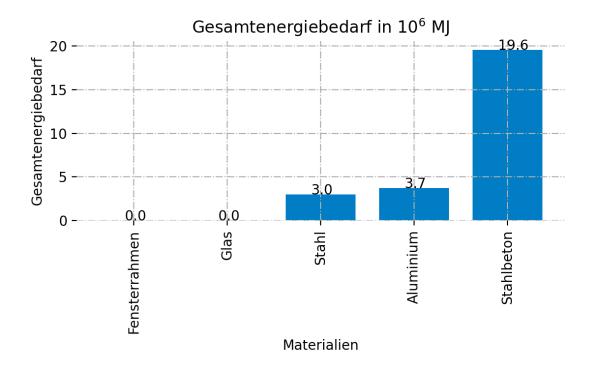



Bei den Referenzwerten und deren Bewertungen handelt es sich um Daten von der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).

Nähere Details zu den Indikatoren, Referenzwerten und Definitionen sind als Anhang 12.2 beigelegt.


10.1. Gesamtprimärenergiebedarf - Lebenszyklusbetrachtung

Für die Nutzungsphase wird ein Bilanzierungszeitraum von 50 Jahren angenommen. Eine Energiespeicherung ist durch "die Recycling-, Rückgewinnungs- oder Wiederverwendungspotenziale für das nächste Produktsystem" (Figl, 2017) möglich.



10.2. Gesamtprimärenergiebedarf - je IFC-Klasse

10.3. Gesamtprimärenergiebedarf - je Material

11. Bewertung und Vorschläge

Vorschläge zur Einsparung - allgemein

• Verringern der Masse

Konstruktive Änderung, um die Masse der Bauteile zu verringern

Alternative Baustoffe

Materialien mit ökologisch wertvolleren Baustoffen austauschen

• Lebenszyklus verlängern

Standard-Bauteile, modulare Bauweise, wiederverwendbare Bauteile, demontierbare Bauteile

Projektindividuelle Vorschläge zu Einsparungen erarbeiten wir gerne für Sie. Für diese besondere Beratungsleistung unterbreiten wir Ihnen gerne ein Angebot. Sprechen Sie uns an, wir beraten Sie gerne.

12. Anhang

12.1. Graue Umwelteinflüsse je Material

Material	GWP gesamt in t CO2 Äquiv	POCP gesamt in kg Ethen Äquiv	AP gesamt in kg SO2 Äquiv	EP gesamt in kg Phosphat Äquiv	PENRT gesamt in MJ	PERE gesamt in MJ
Aluminium	200,5	394,2	629,0	1774,3	2786532,7	872983,2
Fensterrahmen	0,0	0,0	0,0	0,0	0,0	0,0
Glas	2,3	1,8	26,5	2,0	45437,8	2822,3
Stahl	180,6	66,3	336,4	41,6	2179694,8	778993,8
Stahlbeton	1517,7	672,2	2887,8	1625,7	14759099,8	4825249,7
Summe	1901,1	1134,5	3879,7	3443,6	19770765,1	6480049,0

(Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen, 2021)

12.2. Graue Umwelteinflüsse mit Referenzwerten bezogen auf ein m² Netto-Raumfläche

Umweltindikator	Indikator	Grenzwert Typ II	Zielwert Typ II	Übererfüllung Typ II	Gewichtung	Das Gebäude im Ver- gleich, Typ II	Teilpunkte Typ II	gewichtete Teilpunkte Typ II
Treibhauspotenzial in kg CO₂ Äquiv/Netto- Raumfläche	230,9	840,0	420,0	330,0	0,4	gut	66,0	26,4
Ozonbildungspotenzial in kg Ethen Äquiv/Netto-Raumflä- che	0,1	0,5	0,2	0,1	0,1	befriedigend	59,8	6,0
Versauerungspotenzial in kg SO2 Äquiv/Netto- Raumfläche	0,5	2,6	1,0	0,8	0,1	gut	73,5	7,3
Überdüngungspotenzial in kg Phosphat Äquiv/Netto-Raumflä- che	0,4	0,4	0,1	0,1	0,1	schlecht	0,0	0,0
Gesamtenergiebedarf in MJ/Netto-Raumfläche	3188,1	9590,0	4795,0	3767,5	0,1	gut	64,8	6,5
Nicht-erneuerbare Pri- märenergie in MJ/Netto-Raumfläche	2401,1	8610,0	4305,0	3382,5	0,2	gut	69,1	10,4
Anteil erneuerbarer Pri- märenergie in %	24,7	5,0	30,0	37,5	0,0	sehr gut	39,7	2,0

Gebäudetyp I:

Büro, Bildung, Wohnen, Hotel, Verbrauchermärkte, Shopping, Center, Geschäftshäuser, Versammlungsstätten

Gebäudetyp II:

Logistik, Produktion, Versammlungsstätten

Mischgebäude:

Das Gebäude setzt sich aus Anteilen von Gebäudetyp I und II zusammen.

(Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen, 2021)

12.3. Definitionen

GWP: Treibhauspotenzial / Globales Erwärmungspotenzial

"Durch die Emission von Treibhausgasen wurde und wird der anthropogene Klimawandel verursacht. Dies bedroht nicht nur die Artenvielfalt, sondern stellt auch die Menschheit vor große Herausforderungen. Gerade im Gebäudebereich sind durch effiziente Energienutzung große Einsparungen möglich und wirtschaftlich umsetzbar. Neben der Freisetzung von Treibhausgasen in der Betriebsphase werden auch Herstellung und Entsorgungsszenarien der verwendeten Baustoffe einbezogen." (Löhnert, 2011)

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 214 kg CO₂ Äquivalent / m3

POCP: Ozonbildungspotenzial

"Während Ozon in der Stratosphäre vor zu hoher UV-Strahlung schützt, schädigt aus Spurengasen (z.B. Stickoxiden und Kohlenwasserstoffen) bodennah gebildetes Ozon (Sommersmog) die Atemorgane von Mensch und Tier. Die Bildung muss daher durch geeignete Maßnahmen begrenzt werden." (Löhnert, 2011)

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 0,012355 kg Ethen Äquivalent / m3

AP: Versauerungspotenzial

"Schwefel- und Stickstoffverbindungen aus anthropogen verursachten Emissionen reagieren in der Luft zu Schwefel- bzw. Salpetersäure, die als "Saurer Regen" zur Erde fallen und Boden, Gewässer, Lebewesen und Gebäude schädigen. Der Eintrag von Schwefel- und Stickstoffverbindungen in die Atmosphäre ist daher auf ein Minimum zu reduzieren." (Löhnert, 2011)

Beispiel

Beton der Druckfestigkeitsklasse C 30/37: ca. 0,3561 kg SO₂ Äquivalent / m3

EP: Überdüngungspotenzial

"Überdüngung (Eutrophierung) bezeichnet den Übergang von Gewässern und Böden von einem nährstoffarmen (oligotrophen) in einen nährstoffreichen (eutrophen) Zustand. Sie wird verursacht durch die Zufuhr von Nährstoffen, insbesondere durch Phosphor- und Stickstoffverbindungen.

Diese entstehen u.a. bei der Erzeugung von Biokraftstoffen, können aber auch bei der Herstellung von Bauprodukten und Verbrennungsemissionen in die Umwelt gelangen. Der unkontrollierte Eintrag von Nähr-stoffen in Böden und Gewässer kann unerwünschte Auswirkungen auf Pflanzen und Tiere am Standort haben. So kann es durch die Änderung des Nahrungsangebotes in Gewässern zu vermehrten Algenwachstum und in der Folge zum Sterben der Fische führen." (Löhnert, 2011)

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 0,0695 kg Phosphat Äquivalent / m3

PERE: Erneuerbarer Primärenergiebedarf

"Neben der Senkung des Gesamtprimärenergiebedarfs ist es im Sinne einer nachhaltigen Entwicklung Ziel der Bundesregierung, den Anteil der erneuerbaren Energien am Gesamtprimärenergiebedarf zu erhöhen und damit gleichzeitig den Bedarf an nicht erneuerbaren Energieträgern zu senken. Dieses Ziel kann durch hohe Energieeffizienz und einen verstärkten Einsatz erneuerbarer Energie erreicht werden." (Löhnert, 2011)

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 154 MJ / m3

PENRT: Nicht-erneuerbarer Primärenergiebedarf

"Mit dem Kriterium wird der Ressourcenverbrauch fossiler Energieträger bewertet. Ziel ist die Minimierung des Verbrauchs endlicher Ressourcen. Um dieses Ziel zu erreichen, muss der flächen- und jahresbezogene Bedarf an Primärenergie über den Lebenszyklus optimiert werden." (Löhnert, 2011)

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 1179 MJ / m3

PE: Gesamtprimärenergiebedarf

Der Gesamtprimärenergiebedarf ergibt sich aus der Summe der erneuerbaren und nicht-erneuerbaren Primärenergie

Beispiel:

Beton der Druckfestigkeitsklasse C 30/37: ca. 1333 MJ / m3

13. Literaturverzeichnis

Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen. (2021). ÖKOBAUDAT. Berlin. Figl, H. (Januar 2017). ÖKOBAUDAT. Abgerufen am 16. 06 2021 von https://www.oekobaudat.de/fileadmin/downloads/0039bf170209mh1.pdf

Löhnert, D. G. (2011). nachhaltigesbauen.de. Abgerufen am 15. 06 2021 von https://www.nachhaltigesbauen.de/fileadmin/pdf/veroeffentlichungen/Bewertungssystem_Nachhaltiges_Bauen.pdf